Ja n 19 97 A universal Polish G - space

نویسنده

  • Greg Hjorth
چکیده

If G is a Polish group, then the category of Polish G-spaces and continuous G-mappings has a universal object. §0. Preface It is known from [2] that 0.1. Theorem (de Vries). Let G be a separable locally compact metric group. Then the category of continuous G-maps and separable complete metric G-spaces has a universal object. In other words, there is a separable complete metric space X on which G acts continuously, and such that for any other separable completely metrizable Y on which there is a continuous G action we can find a continuous π : X → Y such that for all x0, x1 ∈ X, g ∈ G g · x0 = x1 ⇔ g · π(x0) = π(x1). On the other hand in [1]: 0.2. Theorem (Becker, Kechris). Let G be a Polish group – that is to say a separable topological group admitting a complete metric. Then the category of Borel G-maps and separable complete metric G-spaces has a universal object. While here we unify these with: 0.3. Theorem. Let G be a Polish group. Then the category of continuous G-maps and separable complete metric G-spaces has a universal object. The proof gives incidental information beyond the original goal. We may relax the condition that G be Polish to simply being a separable metric group, and even in this case one has a Polish G-space that is universal for all separable metric G-spaces: 0.4. Theorem. Let G be a separable metric group. Then there is Polish X such that: (i) G acts continuously on X; and whenever G acts continuously on some separable metric space Y we may find π : Y → X so that ∗Research partially supported by NSF grant DMS 96-22977 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 5 Ja n 19 98 A model with no magic set

We will prove that there exists a model of ZFC+“c = ω2” in which every M ⊆ R of cardinality less than continuum c is meager, and such that for every X ⊆ R of cardinality c there exists a continuous function f :R → R with f [X] = [0, 1]. In particular in this model there is no magic set, i.e., a set M ⊆ R such that the equation f [M ] = g[M ] implies f = g for every continuous nowhere constant f...

متن کامل

v 1 1 8 Ja n 19 94 GROUP COHOMOLOGY , MODULAR THEORY AND SPACE - TIME SYMMETRIES

The Bisognano-Wichmann property on the geometric behavior of the modular group of the von Neumann algebras of local observables associated to wedge regions in Quantum Field Theory is shown to provide an intrinsic sufficient criterion for the existence of a covariant action of the (universal covering of) the Poincaré group. In particular this gives, together with our previous results, an intrins...

متن کامل

Borel Actions of Polish Groups

We show that a Borel action of a Polish group on a standard Borel space is Borel isomorphic to a continuous action of the group on a Polish space, and we apply this result to three aspects of the theory of Borel actions of Polish groups: universal actions, invariant probability measures, and the Topological Vaught Conjecture. We establish the existence of universal actions for any given Polish ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999